On the space of real line arrangements

J. Huisman

Abstract

The set of all real line arrangements of given degree in the real projective plane is known to have a natural semialgebraic structure. The nonreduced arrangements are singular points of this structure. We show that the set of all real line arrangements of given degree has also a natural structure of a smooth compact connected affine real algebraic variety. As a consequence, we get a projectively linear structure on the set of all real line arrangements of given degree.

MSC 2000: 52C35

Keywords: real line arrangement, configuration of real lines

1 Introduction

Let K be any field. A line arrangement over K is a closed subscheme [2] of the projective plane $\mathbb{P}^2 = \mathbb{P}^2_K$, defined by a nonzero homogeneous polynomial $F \in K[X, Y, Z]$ that is equal to the product of its linear factors in $K[X, Y, Z]$. Equivalently, a line arrangement over K is a proper closed subscheme of \mathbb{P}^2 that is the scheme-theoretic union of finitely many projective lines in \mathbb{P}^2. Note that, with the current definition, line arrangements are not necessarily reduced or nonempty (cf. [3]).

Since the set of projective lines in \mathbb{P}^2 is parametrized by the set $(\mathbb{P}^2)^\vee(K)$ of all K-rational points of the dual projective plane $(\mathbb{P}^2)^\vee$, the set of all line arrangements of degree d over K is naturally parametrized by the symmetric power

$$\mathcal{A}_d = ((\mathbb{P}^2)^\vee(K))^{(d)} ,$$

where d is a natural integer.

Now, the set \mathcal{A}_d has two bad properties:

1. \mathcal{A}_d is not, in a natural way, the set of K-rational points of an algebraic variety over K, and
2. \mathcal{A}_d contains singularities, as a subset of the algebraic variety $((\mathbb{P}^2)^\gamma)^{(d)}$.

Indeed, as for property 1, \mathcal{A}_d is a subset of the set $((\mathbb{P}^2)^\gamma)^{(d)}(K)$ of all K-rational points of the symmetric power $((\mathbb{P}^2)^\gamma)^{(d)}$. One has a strict inclusion

$$\mathcal{A}_d \subsetneq ((\mathbb{P}^2)^\gamma)^{(d)}(K)$$

if and only if the field K admits a nontrivial extension of degree $\leq d$. For example, if K is algebraically closed then \mathcal{A}_d is equal to the set of K-rational points of $((\mathbb{P}^2)^\gamma)^{(d)}$. However, if K is not algebraically closed, \mathcal{A}_d is strictly contained in $((\mathbb{P}^2)^\gamma)^{(d)}(K)$ for all $d \geq d_0$, for some natural integer d_0. For example, if K is the field \mathbb{R} of real numbers then \mathcal{A}_d is a strict semialgebraic subset of $((\mathbb{P}^2)^\gamma)^{(d)}(\mathbb{R})$ for all $d \geq 2$.

As for property 2, since $(\mathbb{P}^2)^\gamma$ is 2-dimensional, the symmetric power $((\mathbb{P}^2)^\gamma)^{(d)}$ is singular along the so-called big diagonal Δ for all $d \geq 2$.

While seemingly nothing can be done to resolve property 1, one can resolve property 2 by resolution of singularities. This has, however, the following drawback. Let \mathcal{A}_d be a resolution of singularities of \mathcal{A}_d. Let \mathcal{A} be the disjoint union of \mathcal{A}_d, for $d \in \mathbb{N}$ and let, similarly, \mathcal{A} be the disjoint union of \mathcal{A}_d, for $d \in \mathbb{N}$. Then, the scheme-theoretic union of line arrangements over K, which is a monoid law

$$\mathcal{A} \times \mathcal{A} \to \mathcal{A}$$

on \mathcal{A}, does not extend to a map

$$\mathcal{A} \times \mathcal{A} \to \mathcal{A}.$$

Therefore, even if K is algebraically closed, property 2 erects serious obstacles.

The object of this paper is to show that, when K is the field \mathbb{R} of real numbers, both bad properties 1 and 2 can be resolved. More precisely, we show that \mathcal{A}_d can be identified, in a natural way, with the whole set of real points of a proper smooth algebraic variety over \mathbb{R} (see Corollary 2.2). In particular, \mathcal{A}_d has a natural structure of a smooth compact connected affine real algebraic variety in the sense of [1]. Moreover, with respect to this structure, the scheme-theoretic union of real line arrangements

$$\mathcal{A} \times \mathcal{A} \to \mathcal{A}$$

is an algebraic map (see Corollary 2.3).

The idea is that the set \mathcal{A}_d is parametrized by the set of all effective divisors of degree $2d$ on a certain real algebraic curve Q (see Section 2). In Section 3, we determine more explicitly this parametrization as a parametrization of \mathcal{A}_d by Laurent polynomials.
A real algebraic structure on the space of real line arrangements

Let Q be the anisotropic real conic in $\mathbb{P}^2 = \mathbb{P}^2_{\mathbb{R}}$ defined by the equation

$$X^2 + Y^2 + Z^2 = 0.$$

To say that Q is anisotropic means that Q has no real points, i.e., $Q(\mathbb{R}) = \emptyset$. Define, for any natural integer d,

$$\text{Div}_{\geq 0}^d(Q)$$

to be the set of effective divisors on Q of degree $2d$. Let

$$\text{Div}_{\geq 0}(Q) = \prod_{d \in \mathbb{N}} \text{Div}_{\geq 0}^d(Q)$$

to be the disjoint union of $\text{Div}_{\geq 0}^d(Q)$, for $d \in \mathbb{N}$. Since all divisors on Q are of even degree, the set $\text{Div}_{\geq 0}(Q)$ is nothing but the set of all effective divisors on Q, as is suggested by its notation. The addition of effective divisors defines a monoid law

$$\text{Div}_{\geq 0}(Q) \times \text{Div}_{\geq 0}(Q) \rightarrow \text{Div}_{\geq 0}(Q)$$
on $\text{Div}_{\geq 0}(Q)$.

Define a map

$$\varphi : A \rightarrow \text{Div}_{\geq 0}(Q)$$
as follows. Let A be a real line arrangement in \mathbb{P}^2. Then, the intersection product $A \cdot Q$ is well defined since no irreducible component of A is contained in Q. Therefore, the intersection product $A \cdot Q$ is a well defined effective divisor on Q. Define

$$\varphi(A) = A \cdot Q.$$

Theorem 2.1. The map φ is an isomorphism of graded monoids, i.e., φ is a bijective morphism of monoids such that

$$\varphi(A_d) = \text{Div}_{\geq 0}^d(Q)$$

for all $d \in \mathbb{N}$.

Proof. Let A and B be two real line arrangements. Denote by $A + B$ the scheme-theoretic union of A and B. One has

$$\varphi(A + B) = (A + B) \cdot Q = A \cdot Q + B \cdot Q = \varphi(A) + \varphi(B).$$
Therefore, \(\varphi \) is a morphism of monoids. Moreover, \(\varphi \) is a morphism of graded monoids since

\[
\varphi(A_d) \subseteq \text{Div}^{2d}_{\geq 0}(Q),
\]

by Bezout’s Theorem.

In order to show that \(\varphi \) is an isomorphism, it suffices to show that the restriction \(\varphi_d \) of \(\varphi \) to \(A_d \) is bijective onto \(\text{Div}^{2d}_{\geq 0}(Q) \), for any \(d \in \mathbb{N} \). Choose \(D \in \text{Div}^{2d}_{\geq 0}(Q) \). There are distinct closed points \(P_1, \ldots, P_n \) of \(Q \) and nonzero natural integers \(m_1, \ldots, m_n \) such that

\[
D = \sum_{i=1}^{n} m_i P_i.
\]

For each \(i \in \{1, \ldots, n\} \), there is exactly one real projective line \(L_i \) in \(\mathbb{P}^2 \) such that \(L_i \cdot Q = P_i \). Indeed, a closed point \(P_i \) of \(Q \) corresponds to a pair of distinct complex conjugate points \(\{Q, \overline{Q}_i\} \) of the complexification \(Q_{\mathbb{C}} = Q \times_{\mathbb{R}} \mathbb{C} \) of \(Q \). The real projective line \(L_i \) is the unique real projective line whose complexification passes through \(Q_i \) and \(\overline{Q}_i \). Let \(A \) be the real line arrangement \(\sum m_i L_i \). Then \(A \in A_d \) and \(\varphi_d(A) = D \). This shows surjectivity of \(\varphi_d \). Moreover, one easily sees that \(A \) is the unique real line arrangement in \(A_d \) satisfying \(\varphi_d(A) = D \). Hence, \(\varphi_d \) is also injective.

Since \(Q \) is a rational curve over \(\mathbb{R} \), the set \(\text{Div}^{2d}_{\geq 0} \) can be naturally identified with the set of real points of a real projective space. Indeed, let \(\mathcal{L}(d) \) be the restriction to \(Q \) of the invertible sheaf \(\mathcal{O}(d) \) on \(\mathbb{P}^2 \), for any \(d \in \mathbb{N} \). The map

\[
\psi_d : \mathbb{P}(H^0(Q, \mathcal{L}(d))) \longrightarrow \text{Div}^{2d}_{\geq 0}(Q)
\]

that associates to a nonzero global section \(s \) of \(\mathcal{L}(d) \) its divisor \(\text{div}(s) \), is a bijection by the Riemann-Roch Theorem. Here, the notation \(\mathbb{P}(V) \) denotes the real projective space of all 1-dimensional subspaces of the real vector space \(V \).

Corollary 2.2. Let \(d \in \mathbb{N} \). The map

\[
\psi_d^{-1} \circ \varphi_d : A_d \longrightarrow \mathbb{P}(H^0(Q, \mathcal{L}(d)))
\]

is a bijection. In particular, the set \(A_d \) of all real line arrangements of degree \(d \) has a natural structure of a real algebraic variety in the sense of [1]. With respect to this structure, \(A_d \) is isomorphic to \(\mathbb{P}^{2d}(\mathbb{R}) \). In particular, \(A_d \) is a smooth compact connected affine real algebraic variety.
Let us make precise what is meant by a natural structure of a real algebraic variety on the set \mathcal{A}_d. Let $\{A_t\}_{t \in T}$ be an algebraic family of real line arrangements of degree d over a base T. More precisely, T is an affine real algebraic variety in the sense of [1], and the subset
\[A = \bigcup_{t \in T} A_t \times \{t\} \]
of $\mathbb{P}^2 \times T$ is an algebraic subset, each of whose fibers A_t over $t \in T$ is a real line arrangement of degree d. More concretely, A is defined by a homogeneous polynomial
\[F \in \mathcal{R}(T)[X, Y, Z] \]
of degree d with coefficients in the ring $\mathcal{R}(T)$ of all regular functions on T [1], such that for all $t \in T$, the evaluation of F at t defines a real line arrangement in \mathbb{P}^2 of degree d. To say that the above structure on \mathcal{A}_d of a real algebraic is natural means that the map
\[f : T \to \mathcal{A}_d \]
defined by $f(t) = A_t$ is a real algebraic morphism.

Note that the situation is rather subtle; the universal family
\[U_d = \bigcup_{A \in \mathcal{A}_d} A \times \{A\} \subseteq \mathbb{P}^2 \times \mathcal{A}_d \]
of real line arrangements of degree d is not an algebraic family of real line arrangements over \mathcal{A}_d. In fact, the subset U_d is only semialgebraic. More precisely, U is defined by a homogeneous polynomial F with coefficients in the ring $\mathcal{S}(\mathcal{A}_d)$ of all semialgebraic functions on \mathcal{A}_d, and not with coefficients in $\mathcal{R}(\mathcal{A}_d)$. This will be proven in the next section (see Proposition 3.1).

Another observation we would like to make is that, by Corollary 2.2, \mathcal{A}_d is isomorphic to $\mathbb{P}^{2d}(\mathbb{R})$, with respect to its natural real algebraic structure. In particular, one gets a projectively linear structure on the set \mathcal{A}_d. For example, given two distinct real line arrangements A and B of degree d, there is a unique real projective line of real line arrangements of degree d that contains A and B!

We conclude this section by a further consequence of Theorem 2.1. Put
\[\mathbb{P}(H^0(Q, \mathcal{L}(\ast))) = \prod_{d \in \mathbb{N}} \mathbb{P}(H^0(Q, \mathcal{L}(d))). \]
The tensor product of global sections endows $\mathbb{P}(H^0(Q, \mathcal{L}(\ast)))$ with the structure of a graded monoid. Let
\[\psi : \mathbb{P}(H^0(Q, \mathcal{L}(\ast))) \rightarrow \text{Div}_{\geq 0}(Q) \]
be the map whose restriction to $\mathbb{P}(H^0(Q, \mathcal{L}(d)))$ is equal to ψ_d.

5
Corollary 2.3. The map
\[\psi^{-1} \circ \varphi : \mathcal{A} \longrightarrow \mathbb{P}(H^0(Q, \mathcal{L}(\ast))) \]
is an isomorphism of graded monoids. In particular, \(\mathcal{A} \) is a real algebraic monoid, i.e., the scheme-theoretic union on the set of all real line arrangements \(\mathcal{A} \) is real algebraic with respect to the natural real algebraic structure on \(\mathcal{A} \).

3 An explicit description of the real algebraic structure on \(\mathcal{A}_d \)

As observed in Section 2, the real algebraic curve \(Q \) is rational. Hence, its complexification \(Q_\mathbb{C} \) is isomorphic to the complex projective line \(\mathbb{P}^1_\mathbb{C} \). Choose, once and for all, an isomorphism between \(Q_\mathbb{C} \) and \(\mathbb{P}^1_\mathbb{C} \) having the following property. The action of complex conjugation on \(Q_\mathbb{C} \) corresponds to the action of complex conjugation on \(\mathbb{P}^1_\mathbb{C} \) defined by
\[z \mapsto -\frac{1}{\bar{z}} \]
for \(z \in \mathbb{C} \), where \(z \mapsto \bar{z} \) denotes the usual action of complex conjugation on \(\mathbb{C} \). Such an isomorphism exists since the action of complex conjugation on \(\mathbb{P}^1_\mathbb{C} \) defined above does not have any fixed points on \(\mathbb{P}^1(\mathbb{C}) \). With the point of view of \(\mathbb{P}^1_\mathbb{C} \) as the Riemann sphere \(S^2 = \mathbb{P}^1(\mathbb{C}) \), the action of complex conjugation on \(Q_\mathbb{C} \) corresponds to the antipodal action on \(S^2 \).

Let \(d \in \mathbb{N} \). With respect to the isomorphism \(Q_\mathbb{C} \cong \mathbb{P}^1_\mathbb{C} \), the complexification \(\mathcal{L}(d)_\mathbb{C} \) of the invertible sheaf \(\mathcal{L}(d) \) on \(Q \) is isomorphic to the invertible sheaf \(\mathcal{O}(d \cdot 0 + d \cdot \infty) \) on \(\mathbb{P}^1_\mathbb{C} \). The complex vector space of global sections of \(\mathcal{O}(d \cdot 0 + d \cdot \infty) \) is the complex vector space \(L_\mathbb{C}(d) \) of all complex Laurent polynomials
\[\sum_{i=-d}^{d} a_i Z^i, \]
where \(a_i \in \mathbb{C} \) for \(i = -d, \ldots, d \). The action of complex conjugation on the set of all global sections of \(\mathcal{L}(d)_\mathbb{C} \) corresponds to the action of complex conjugation on \(L_\mathbb{C}(d) \) defined by
\[\sum_{i=-d}^{d} a_i Z^i \mapsto \sum_{i=-d}^{d} (-1)^{|i|} \bar{a}_{-i} Z^i, \]
where \(a_i \in \mathbb{C} \) for \(i = -d, \ldots, d \). Therefore, one can identify the real vector space of global sections of \(\mathcal{L}(d) \) with the real vector space \(L(d) \) of all complex
Laurent polynomials
\[\sum_{i=-d}^{d} a_i Z^i, \]
where the \(a_i \in \mathbb{C} \) satisfy \(a_{-i} = (-1)^i a_i \) for all \(i = 0, \ldots, d \). In particular, we can identify \(\mathbb{P}(H^0(Q, \mathcal{L}(d))) \) with the real projective space \(\mathbb{P}(L_d) \).

The set of effective divisors \(\text{Div}^{2d}_{\geq 0}(Q) \) of degree \(2d \) on \(Q \) can be identified with the set \(D^{2d} \) of effective divisors of degree \(2d \) on \(\mathbb{P}^1 \), that are stable for the action of complex conjugation on \(\mathbb{P}^1 \) as defined above.

The map \(\psi_d : \mathbb{P}(H^0(Q, \mathcal{L}(d))) \to \text{Div}^{2d}_{\geq 0}(Q) \) then corresponds to the map
\[\chi_d : \mathbb{P}(L(d)) \to D^{2d} \]
defined by letting \(\chi(P) \) be the divisor \(\text{div}(P) + d \cdot 0 + d \cdot \infty \), for any Laurent polynomial \(P \in L(d) \). Here, \(\text{div}(P) \) is the divisor of \(P \) as a rational function on \(\mathbb{P}^1 \).

Next, we want to have a more concrete description of the map
\[\varphi_d^{-1} : \text{Div}^{2d}_{\geq 0}(Q) \to \mathcal{A}_d. \]

The set \(\text{Div}^{2d}_{\geq 0}(Q) \) has already been identified with \(D^{2d} \). We define a map
\[\rho_d : D^{2d} \to \mathcal{A}_d \]
as follows. An element \(D \) of \(D^{2d} \) is a divisor on the Riemann sphere \(S^2 \) of the form
\[\sum_{i=1}^{n} m_i (P_i + [-1]P_i), \]
where \([-1]\) is the antipodal map on \(S^2 \), the points \(P_i, [-1]P_i \), for \(i = 1, \ldots, n \), are distinct, and the \(m_i \) are nonzero natural integers. For each \(i \in \{1, \ldots, n\} \)
let \(C_i \subseteq S^2 \) be the great circle of points that are equidistant to \(P_i \) and \([-1]P_i\). Let \(\pi : S^2 \to \mathbb{P}^2(\mathbb{R}) \) be the quotient map for the antipodal action on \(S^2 \). Let \(L_i \) be the real projective line in \(\mathbb{P}^2 \) such that \(L_i(\mathbb{R}) = \pi(C_i) \). Define
\[\rho_d(D) = \sum_{i=1}^{n} m_i L_i. \]

Then it is an easy matter to check that \(\rho \) corresponds to the map \(\varphi_d^{-1} \), after a suitable change of coordinates on \(\mathbb{P}^2 \).

Resuming, the map
\[\rho_d \circ \chi_d : \mathbb{P}(L(d)) \to \mathcal{A}_d \]
corresponds under the above identifications to the map $\varphi_d^{-1} \circ \psi_d$. In particular, $\rho_d \circ \chi_d$ is an isomorphism of real algebraic varieties with respect to the natural structure of a real algebraic variety on A_d.

As an application we show the following statement.

Proposition 3.1. Let $d \in \mathbb{N}$. The universal family U_d of real line arrangements of degree d is semi-algebraic. If $d \geq 2$ then U_d is not algebraic.

Proof. The universal family of effective divisors of degree $2d$ on Q is clearly algebraic. Therefore, the universal family of divisors in D^{2d} on the Riemann sphere S^2 is algebraic as well. Then the universal family of arrangements of great circles in S^2 of degree d is semi-algebraic. Hence, the universal family U_d of real line arrangements of degree d is semi-algebraic.

We show that U_d is truely semi-algebraic, i.e., nonalgebraic if $d \geq 2$. By Corollary 2.3, it suffices to show this for $d = 2$.

Define a family of complex polynomials $P_t \in \mathbb{C}[Z]$, depending on a real parameter $t \in \mathbb{R}$, by

$$P_t = Z^2 + t.$$ Symmetrize P_t multiplicatively to a family of Laurent polynomials in $L(2)$:

$$L_t = tZ^{-2} + (t^2 + 1) + tZ^2.$$ for $t \in \mathbb{R}$.

Let C_t be the associated family of arrangements of great circles of degree 2 in S^2, and let A_t be the associated family of real line arrangements of degree 2.

For $t < 0$, the roots of P_t are on the real axis. Therefore, the divisor $\text{div}(L_t) + 2 \cdot 0 + 2 \cdot \infty$ has its support on the real axis as well, for $t < 0$. It follows that the points $\pm \sqrt{-1}$ belong to C_t for $t < 0$. In fact, the points $\pm \sqrt{-1}$ are the intersection points of the two great circles of C_t, for $t < 0$. Hence, the point $\pi(\pm \sqrt{-1}) \in \mathbb{P}^2(\mathbb{R})$ belongs to A_t when $t < 0$.

Now suppose that U_2 is algebraic. Then A_t is algebraic too, and hence the point $\pi(\pm \sqrt{-1})$ belongs to A_t for $t \geq 0$ as well. But for $t = 1$, the roots of P_t are $\pm \sqrt{-1}$. Therefore,

$$\text{div}(L_1) + 2 \cdot 0 + 2 \cdot \infty = 2 \cdot \sqrt{-1} + 2 \cdot (-\sqrt{-1}).$$

Then, C_1 is equal to $2 \cdot \mathbb{P}^1(\mathbb{R})$, where $\mathbb{P}^1(\mathbb{R})$ is considered as a subset of $\mathbb{P}^1(\mathbb{C}) = S^2$. It follows that C_1 does not contain any of the points $\pm \sqrt{-1}$. Then, A_1 does not contain the point $\pi(\pm \sqrt{-1})$ of $\mathbb{P}^2(\mathbb{R})$. Contradiction. \qed
REFERENCES

INSTITUT DE RECHERCHE MATHEMATIQUE DE RENNES
UNIVERSITE DE RENNES 1
CAMPUS DE BEAULIEU
35042 RENNES CEDEX
FRANCE
E-MAIL: huisman@univ-rennes1.fr
HOME PAGE: http://www.maths.univ-rennes1.fr/~huisman/

Typeset by A4S-TEX